Logit και Probit Models - Τι είναι, ορισμός και έννοια

Τα μοντέλα Logit και Probit είναι μη γραμμικά οικονομετρικά μοντέλα που χρησιμοποιούνται όταν η εξαρτημένη μεταβλητή είναι δυαδική ή πλαστή, δηλαδή μπορεί να πάρει μόνο δύο τιμές.

Το απλούστερο μοντέλο δυαδικής επιλογής είναι το μοντέλο γραμμικής πιθανότητας. Ωστόσο, υπάρχουν δύο προβλήματα με τη χρήση του:

  • Οι πιθανότητες που λαμβάνονται μπορεί να είναι μικρότερες από μηδέν ή μεγαλύτερες από μία,
  • Το μερικό αποτέλεσμα παραμένει πάντα σταθερό.

Για να ξεπεραστούν αυτά τα μειονεκτήματα, σχεδιάστηκαν το μοντέλο logit και το μοντέλο probit, τα οποία χρησιμοποιούν μια συνάρτηση που υποθέτει μόνο τιμές μεταξύ μηδέν και ενός. Αυτές οι συναρτήσεις δεν είναι γραμμικές και αντιστοιχούν στις συναρτήσεις αθροιστικής κατανομής.

Μοντέλο Logit

Στο μοντέλο Logit, η πιθανότητα επιτυχίας αξιολογείται στη συνάρτηση G (z) = / (z) όπου

Αυτή είναι η τυπική συνάρτηση λογιστικής αθροιστικής διανομής.

Για παράδειγμα, με αυτήν τη συνάρτηση και αυτές τις παραμέτρους θα λάβουμε μια τιμή:

Να θυμάστε ότι η ανεξάρτητη μεταβλητή είναι η προβλεπόμενη πιθανότητα επιτυχίας. Το Β0 υποδεικνύει την προβλεπόμενη πιθανότητα επιτυχίας όταν κάθε ένα από τα x ισούται με μηδέν. Ο συντελεστής Β1 Το όριο μετρά τη διακύμανση στην προβλεπόμενη πιθανότητα επιτυχίας όταν η μεταβλητή x1 αυξάνεται κατά μία μονάδα.

Μοντέλο Probit

Στο μοντέλο Probit, η πιθανότητα επιτυχίας αξιολογείται στη συνάρτηση G (z) =Φ (ζ) όπου

Αυτή είναι η τυπική συνάρτηση κανονικής αθροιστικής κατανομής.

Για παράδειγμα, με αυτήν τη συνάρτηση και αυτές τις παραμέτρους θα λάβουμε μια τιμή:

Μερικές επιδράσεις στο Logit και στο Probit

Για να προσδιορίσετε τη μερική επίδραση του x1 στην πιθανότητα επιτυχίας, υπάρχουν αρκετές περιπτώσεις:

Για τον υπολογισμό του μερικού αποτελέσματος κάθε μεταβλητή πρέπει να αντικατασταθεί Χ για μια συγκεκριμένη τιμή, χρησιμοποιείται συχνά ο δείκτης μέσου όρου των μεταβλητών.

Μέθοδοι για την εκτίμηση Logit και Probit

Μη γραμμικά ελάχιστα τετράγωνα

Ο μη γραμμικός εκτιμητής ελάχιστων τετραγώνων επιλέγει τις τιμές που ελαχιστοποιούν το άθροισμα των τετραγώνων υπολειμμάτων

Σε μεγάλα δείγματα, ο μη γραμμικός εκτιμητής ελάχιστων τετραγώνων είναι συνεπής, κανονικά κατανεμημένος και γενικά λιγότερο αποτελεσματικός από τη μέγιστη πιθανότητα.

Μέγιστη πιθανότητα

Ο εκτιμητής μέγιστης πιθανότητας επιλέγει τις τιμές που μεγιστοποιούν τον λογάριθμο της πιθανότητας

Σε μεγάλα δείγματα, ο εκτιμητής μέγιστης πιθανότητας είναι συνεπής, κανονικά κατανεμημένος και είναι ο πιο αποτελεσματικός (επειδή έχει τη μικρότερη διακύμανση όλων των εκτιμητών)

Χρησιμότητα των μοντέλων Logit και Probit

Όπως είπαμε στην αρχή, τα προβλήματα του μοντέλου γραμμικής πιθανότητας είναι διπλά:

  • Οι πιθανότητες που λαμβάνονται μπορεί να είναι μικρότερες από μηδέν ή μεγαλύτερες από μία,
  • Το μερικό αποτέλεσμα παραμένει πάντα σταθερό.

Τα μοντέλα logit και probit επιλύουν και τα δύο προβλήματα: οι τιμές (αντιπροσωπεύουν πιθανότητες) θα είναι πάντα μεταξύ (0,1) και το μερικό αποτέλεσμα θα αλλάξει ανάλογα με τις παραμέτρους. Έτσι, για παράδειγμα, η πιθανότητα ενός ατόμου να συμμετάσχει σε μια επίσημη εργασία θα είναι διαφορετική εάν έχει μόλις αποφοιτήσει ή εάν έχει 15 χρόνια εμπειρίας.

Βιβλιογραφικές αναφορές:

Wooldridge, J. (2010) Εισαγωγή στην Οικονομετρία. (4η έκδοση) Μεξικό: Cengage Learning.

Μοντέλο παλινδρόμησης

Δημοφιλείς Αναρτήσεις

Η αύξηση των μικροπιστώσεων τα τελευταία χρόνια

Ως αποτέλεσμα της παγκόσμιας οικονομικής κατάστασης, αυτός ο τύπος χρηματοοικονομικής πίστωσης έχει γίνει δημοφιλής, επιτρέποντας σε άτομα που διαφορετικά θα είχαν μεγαλύτερη δυσκολία να χρηματοδοτήσουν τον εαυτό τους, σε αντάλλαγμα για ένα όλο και πιο ανταγωνιστικό επιτόκιο. Αυτή η ιδέα χρηματοδότησης σε σύντομες χρονικές περιόδους είναι πρόσφατη και έχει σημειώσει μεγάλη αύξηση. Διαβάστε περισσότερα…

Η Ιρλανδία και η Ισπανία ηγούνται της ευρωπαϊκής ανάκαμψης, αν και με διαφορετικούς δρόμους

Ενώ το μεγαλύτερο μέρος του κόσμου συνεχίζει να υφίσταται τις συνέπειες της κρίσης του 2007, η Ευρωπαϊκή ανάκαμψη καθοδηγείται από την Ιρλανδία και την Ισπανία, εφαρμόζοντας πολύ διαφορετικές λύσεις για την αντιμετώπιση παρόμοιων προβλημάτων. Ως σημείο εκκίνησης, και αποθηκεύοντας τις διαφορές στο μέγεθος του ΑΕΠ και του πληθυσμού, μπορούμε να πούμε ότι Διαβάστε περισσότερα…

Jesús Zamanillo: "Θα χάσουμε ένα σύστημα με περισσότερα χρηματοπιστωτικά ιδρύματα, αλλά λιγότερο ισχυρά."

Παρόλο που δεν υπάρχει αμφιβολία ότι αντιμετωπίζουμε μια τεράστια μεταμόρφωση του τραπεζικού συστήματος, όπου υπάρχουν τεράστιες απολύσεις, συγχωνεύσεις και εξαγορές, είναι δύσκολο να μαντέψουμε τι θα συμβεί στο τραπεζικό σύστημα στο μέλλον. Γι 'αυτό, πήραμε συνέντευξη από τον οικονομολόγο Burgos Jesús Zamanillo, ο οποίος λύνει μερικές αμφιβολίες για το μέλλον των τραπεζών. Υπάρχουν πολλάΔιαβάστε περισσότερα…